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Topology Lattice as Quantum Logic 
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We discuss the relations between the lattice of topologies for the simplest case of 
a three-point set and quantum logic. A hypothetical "topologymeter" is consid- 
ered as a measuring apparatus, and it is shown that it necessarily possesses some 
quantum features, such as complementarity. 

INTRODUCTION 

The most striking feature of  the lattice of  topologies on the set of  three 
(Figure 1) or more points is that this lattice is nondistributive. We begin with 
the principal definitions: 

Let X be an arbitrary set. A topology on X is a collection z of  subsets 
of  X, called open, such that: 

T1. ~ , X ~ v .  
T2. For  any A, B~z,  A n B s z .  
T3. For any collection Aj~ z, Uj~s Aj~ z, where J is an arbitrary index 

set, w and n are the usual set union and intersection, respectively. 

The topologies on a set X are partially ordered: o- is said to be weaker 
than r (denoted by a___ r)  if any set open in o- is open in v: 

~ < v  iff V A c X ,  A ~ c r ~ A ~ r  (0.1) 

Consider in detail the lattice ~(3) of  all topologies on a set of three 
points. 

We use a brief notation for topologies, listing only the minimal open 
sets. For  example, the notation r=ab  means ~= { ~ ,  a, b, {a, b}, {a, b, e}}. 
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Additional examples are 

r =a(ab) = {~ ,  a, {a, b), {a, b, c}} 

z =a(bc)= {~j, a, {b, c}, {a, b, c}} 

and so on. 
Taking the experimental point of view on logic of Finkelstein (1963) 

and applying it to the lattice of topologies, we come to the following picture. 
Imagine that we have a set of apparatus at our disposal. Some of them are 
used to find the answer to the question "Is cr the topology of the three-point 
set?" Let us call such an apparatus a topologymeter. 

Let some other apparatus work in such a way that it checks the property 
corresponding to the disjunction of two properties. This means that it gives 
the answer YES if at least one YES is obtained from the devices checking 
these two properties. We confine ourselves to topologymeters and require 
the disjunction a =fl v 7 to be also a topology when both fl and 7 are 
topologies. 

The conjunction fl ^ y is defined as the property measured by the device 
which gives the answer YES iff the apparatuses measuring fl and y both 
yield YES. 

Now return to the lattice r(3) (Figure 1) and consider it as a property 
lattice. The row of weakest topologies with respect to the partial order (0.1) 
gives the atoms of the lattice. They have the following property: for any 
pair of atoms their conjunction is the least element 0 of r(3)-- the undiscrete 
topology {~:~, {a, b, c}). As will be shown below, it is impossible to define 
a probability measure on the set of atoms of r(3), unlike the property lattice 
of a classical system. This happens due to complementarity. From a quantum 

~ a ~ a 6 ( a ~ t a o ) ( a a  ) 
ae " ( a ~  

C~O 6 

Fig. 1. The lattice r(3). 
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mechanical point of  view, this means that it is in principle impossible to use 
one topologymeter for all topologies in the lower row: several apparatuses 
must be used for measuring complementary properties. In turn, the comple- 
mentarity is caused by the nondistributivity of  the lattice (see Section 1). 

We see the analogous situation in quantum logic. Since quantum logical 
lattices are nondistributive, we necessarily introduce probability amplitudes 
instead of  probability measures (weights). Thus, the mathematical apparatus 
describing quantum objects crucially differs from that for classical ones. 

We shall try to describe the work of  our topologymeter in a way that 
is similar in many respects to the quantum formalism; call it "quantum 
topology" for the set of  three points. Note  that we come to this quantum 
topology imposing no special postulates such as the quantization of  entities 
which were not "quantum" initially. We come to our picture by considering 
the topology lattice and comparing it with standard quantum logical lattices 
for finite quantum mechanical systems (for spin-�89 etc.) 

This comparison shows both the similarity and the essential discrepancy 
between these structures. The object of  this paper is to outline them. 

1. NONDISTRIBUTIVITY 

A lattice L is called distributive if any triple x, y, z of  its elements obeys 
the law of distributivity: 

x A ( y v z ) = ( x ^  y ) v ( X A Z )  (1.1) 

When x, y, z are statements of classical logic and ^ and v are the disjunction 
and conjunction, respectively, the law (1.1) always holds. At the same time, 
the violation of  (1.1) is the main property of the logic of quantum systems. 

Now consider Figure l - - the  Hasse diagram of the topology lattice for 
three points. 

We emphasize that "c(3) is nondistributive. In fact, consider the lowest 
row of atoms of  L, the triple a, (at) ,  (ab). The identity (1, 1) 

a/x [(ac) v (ab)] = a ^ a(ab)(ac) = a 

[a ^ (ac)] v [a/', (ab)] = 0 v 0 = 0 

is broken. Analogously, the following triples of  topologies are nondistribu- 
tive: {c, (ac), (bc)}, {b, (ab), (bc)}, {(ac), a, c}, {(ab), a, b}, {(bc), b, c}. 
Thus, as was already mentioned, the usual classical probability cannot be 
defined on atoms of r(3). If  we interpret the least element 0 as "false," all 
the atom-topologies are incompatible with each other. Since none of  them 
is preferred for our topologymeter, it is natural to assume that the "probabil- 
ity" to find any of  them is p = l/6. The disjunction z v a is defined as the 
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least topology which is stronger than both z" and or. Consider the disjunction 
a v b v c = / ,  the discrete topology. Since a, b, c are disjoint, the probability 
p(a  v b v c) must be equal to the sum 

p ( a v b v c ) = p ( a ) + p ( b )  J i i i +p(c)  = ~ + ~ + ~ = ~  (1.2) 

However, a v b v c=I ,  and p ( I ) =  1, which obviously contradicts (1.2). 
In addition, a physicist (Boolean-minded observer) working with our 

topologymeter will see a strange phenomenon. If  the apparatus shows, say, 
YES for, say, (a), it does not necessarily mean NO for other topologies, in 
spite of their mutual incompatibility. 

Since 

a = a  ^ ( (ac) v (ab)) (1.3) 

the following implications hold: 

[a is true] =~ [a ^ ((ac) v (ab)) is true] ~ [(ac) v (ab) is true] 

The observer is Boolean-minded; thus, for him the latter statement means 
either (ac) or (ab) is true [both cannot be true, since (ac) and (ab) are 
atoms]. So, he will conclude that with some probability he will see this or 
that result. The appeal to a Boolean-minded observer measuring topologies 
corresponds to the von Neumann projection postulate in quantum mechan- 
ics giving rise to probabilities. 

Due to the same reason (1.3), complementarity appears in our topology- 
meter. Complementarity manifests itself here in incompatibility of, say, (a) 
and (ac). Boolean-mindedness is essential here since in non-Boolean logic 
(ac) v (ab) may be true when both (ac) and (ab) are false. 

The Boolean observer will use different apparatuses measuring a, (ab), 
and (ac) and introduce time in such a way that the topology a will be seen 
at one moment and (ac) v (ab) will be seen at some other moment. So, this 
observer will say that the topology somehow "jumps" instantaneously when 
the complementary observables are measured. 

2. ORTHOGONALITY 

The orthogonality in property lattices is very important in quantum 
logic since it is associated with logical negation. The lattice r(3) is comple- 
mented (Larson and Andima, 1975; Isham, 1989), which means that for any 
topology TE z(3) there exists a topology z' such that 

T V Z " = / ,  lr A Z " = 0  

However, this z' is not unique and, moreover, it is impossile to define 
an orthocomplement on r(3). So, the lattice of topologies is complemented, 



Topology Lattice as Quantum Logic 1093' 

but not orthocomplemented. To elucidate this fact, note that the number of 
elements of any ortholattice must be even, while r(3) is of 29 elements. In 
this sense the whole lattice of topologies cannot be considered as a logic 
with negation. Nevertheless we can ask the following question: can a quan- 
tum logical lattice be a substructure o f  a topology lattice? 

Obviously, at least one such substructure does exist. Take the subset of 
r(3) consisting of the lowest row of six proper weakest topologies and the 
undiscrete topology I (Figure 2). The structure obtained is a subposet, but 
not a sublattice of r(3). It is isomorphic to the lattice M6 occurring in Grib 
and Zapatrin (1990, 1991), which corresponds to a property lattice of a 
spin-~- system. The properties 1, 3, 5 (2, 4, 6) are "Sx, Sy, S z = + l  ( -1 ) , "  
respectively. 

The fact that M6 is not a sublattice of ~'(3) operationally correspond to 
the topologymeter measuring nothing besides the atomic topologies and the 
greatest element I. That means that it gives YES when YES is obtained for 
at least one of the topologies 1-6. The elements 1-6 can be associated with 
the topologies (a), (ac) . . . .  , (b), (ab), respectively. For example, the prop- 
erty t means, "We can see the point a as isolated." 

The usual quantum formalism can be built on the base of the lattice 
M6: the properties 1-6 are associated with projectors in two-dimensional 
Hilbert space (Grib and Zapatrin, 1990, 1991). One can define the wave 
function (probability amplitude) instead of the classical probability measure. 
For our experimental setup we can find the answer to the following question: 
" if  the topology was observed as 1 (preparation of the state), what will be 
the probability to observe some other topology from this row?" The rule is 
the usual rule for a spin-�89 system. 

Fig. 2. The lattice M6. 
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The non-Boolean lattice M6 has three Boolean sublattices correspond- 
ing to Sy, S:, S~ (spin projections). These can be the pairs of topologies 
which we can consider as orthogonal: a, (bc) ; b, (ac); c, (ab). Then one must 
have three complementary topologymeters working similar to Stern-Gerlach 
magnets measuring spin projections. The probability to "find an isolated 
point" will be calculated as the probability to detect a certain spin projection. 

Analogously, instead of the lowest row of ,-(3) (Figure 1), we could 
take any other one and draw the same lattice M6 as a subposet of ,-(3). Are 
there deep reasons for this similarity between our topological lattice and a 
spin-�89 system? Note that we have no Planck constant for the topological 
lattice, so that there is nothing microscopic in it. 

3. ORTHOMODULARITY 

Now let us look for some larger substructures of the whole lattice 
(Figure 1). For instance, consider a nondistributive subposet in some sense 
similar to the spin-1 property lattice. We are going to obtain orthomodular 
lattices, but they are constructed from Boolean blocks (Kalmbach, 1983). 
However, there is no Boolean subposets of T(3) that is larger than 23. So, 
the greatest orthomodular subposet of ,-(3) must contain not more than 
three proper rows. Denote it by L (see Figure 3). 

, ! \  >! \! .',, I,> l,> 

Fig. 3. The lattice L. 
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Unlike the general lattice (Figure 1), the orthocomplementation can be 
defined here. So, this lattice can be considered as a logic: the orthocomple- 
mentation will play the role of negation. 

Then let us try to represent it by projectors in a Hilbert space. Unfortun- 
ately, this is impossible since the lattice L is not orthomodular [for details 
see Kalmbach (1983)]. In fact, consider the pair of elements a, (be) L. The 
element a commutes with (bc) • that is, 

[a ^ (be) z] v [a ^ (bc)] = a  

while (bc) • does not commute with a, 

[(be) • ^ a] v [(be) • ^ a l] = a ~ (be) l 

This means that the lattice L cannot be represented by projectors in a Hilbert 
space: it is not orthomodular. Consequently, the object whose property 
lattice is L cannot be described as a quantum system. 

4. ANALYSIS OF EPR EXPERIMENT WITH 
TWO SPIN-~ PARTICLES 

Here we discuss the possible application of the lattice of topologies for 
a three-point set to the Einstein-Podolsky-Rosen experiment with two 
spin-�89 particles. 

Let the particles be prepared in singlet state with s = 0. This preparation 
is made at some point a and corresponds to space-time event "a ."  Even 
when these two particles are emitted, they are still described by an antisym- 
metrized wave function 

1 
ffct(Xb, Xc) = ~ [ ~ll (Xb) l p r2 (Xc)  ' - -  ~t  I (Xc) I ] / 2 ( X b ) ]  

This wave function is associated with the nonlocal event (be). We use (bc) 
in order to stress that "b" and "c" do not exist as separate entities. This 
wave function is an eigenstate of the nonlocal permutation operator 
?12 which does not commute with operators of local coordinates for both 
particles 1 and 2. 

So, our hypothesis is to put the arguments, of a many-particle wave 
function in multidimensional configuration space into correspondence with 
some topology: here it is (bc). As is well known (D'Espagnat, 1976), the 
event 1 in Minkowski space-time appears due to measurement. One of the 
main lines of reasoning within EPR situations showing why Bell's inequali- 
ties (D'Espagnet, 1976) are broken is the following. If  the observer 1 has 
measured spin projection S(. ~) = +�89 for particle 1 at point "b," then he will 
say with probability 1 that the other observer will see S(? ) = -�89 at the other 
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point "c ."  But can observer 1 say that before the observation performed by 
2 there is an "event" at point "c?" Surely the answei" is negative. The observer 
2 could choose to measure not S.-, but S~ and then at c another event would 
occur. More evident proof  of  the nonexistence of  the event at c before 
observation is based on the relativistic definition of  simultaneous events. 

A reference frame always exists where some event prior to b, if it exists, 
is simultaneous to event c. Therefore the properties described by noncom- 
muting operators exist before their observation (S, is in no sense better than 
Sx as some objective reality). But this assumption implies Bell's inequalities, 
which, as we know, are broken for quantum particles. So the question is: 
"What  does the observer do as event creator in the EPR experiment?" Our 
answer is: "He chooses the topology!" He takes out b from (bc) and c from 
(bc). So Minkowski space-time events appear due to three measurements of  
a, b, and c. The event a corresponds to the emission of the prepared pair of 
particles. The observer 1 chooses b (bc) so that b is isolated. The observer 2 
chooses c (bc). Both observers create bc (bc), which together with the 
observer who prepared the wave function at point a constitute the whole L 

We emphasize the importance of  the third point a in the EPR experi- 
ment. The lattice r(2) of topologies on a two-point set is distributive, unlike 
r(3). That  is why (bc) here means (bc) (abc), b means b (abc), and so on. It 
is impossible in EPR experiments to have only two points b and c in space- 
time. This is caused by the noncommutativity of P~2 with local observables. 
/3~2 corresponds to the preparation of  the two-particle state at a moment of  
time other than the measurement of local observables. So in an EPR experi- 
ment the third point a must always occur, separated by some time interval 
from (bc). 

5. SUMMARY 

Let us look at the lattice r(3) of topologies on a three-point set as a 
property lattice. Then, due to its nondistributivity, some kind of  complemen- 
tarity immediately arises as in quantum theory. That  makes it impossible to 
use traditional probability calculus for topologies. 

Now consider the whole lattice (Figure 1) as some logic. We see that 
the lack of orthogonality makes it impossible to define negation in this logic. 
In order to introduce the negation, one could take some substructure of the 
whole lattice. It comes out that such a substructure can only be composed 
of  one row of  elements of  r(3) together with its greatest ( I )  and least (0) 
elements. The obtained substructure can be associated with the well-known 
spin-�89 quantum mechanical system for which the spin projections St ,  Sy, 
are measured. The nondistributivity of  the lattice corresponds to the non- 
commutativity of  the operators Sx, Sy, Sz. 
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For more complex substructures, we could define the orthogonality 
considered as the negation in an appropriate logic. However, this logic is 
not a logic of a quantum system since it is not orthomodular. 

So the lattice r(3) is an interesting example of something more general 
than the usual quantum system. It has substructures corresponding to quan- 
tum systems which are realizations of a quantum formalism beyond micro- 
physics. Generally the collection of topologies can be thought of as some 
new physical object. Its complete description must be realized by a formalism 
more general than the quantum mechanical one. Some hints along these 
lines are given in Zapatrin (1989, 1992). 
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